Main Article Content
Abstract
Olahraga adalah kegiatan fisik yang dilakukan untuk meningkatkan kesehatan tubuh. Dengan meningkatnya jumlah masyarakat yang berolahraga, penting untuk memahami batasan intensitas olahraga yang dilakukan. Intensitas olahraga yang melampaui kemampuan tubuh akan menyebabkan munculnya stres oksidatif. Stres oksidatif akan menimbulkan berbagai masalah fisiologis tubuh, termasuk metabolisme glukosa.
Jenis penelitian adalah eksperimental laboratoris. Tikus putih (Rattus norvegicus) betina galur Wistar usia 2 bulan dengan berat badan 180-200 gram dikelompokkan ke dalam 5 kelompok melalui teknik random sampling. K1 merupakan kontrol, K2 diberi latihan setiap hari selama 2 minggu, K3 diberi latihan sekali seminggu selama 2 minggu, K4 diberi latihan setiap hari selama 2 minggu, dan K5 diberi latihan sekali seminggu selama 2 minggu. Semua kelompok setelahnya diistirahatkan selama 1 minggu. K1, K2, dan K3 tidak diberi intervensi. K4 dan K5 diberi intervensi latihan submaksimal 85% rerata waktu tenggelam pertama. Penelitian diterminasi dan dilakukan pengambilan sampel untuk pengujian kadar glukosa darah acak. Hasil kadar glukosa darah acak diolah statistik dengan uji parametrik one-way Anova dan uji post hoc LSD.
Hasil kadar glukosa darah (K1) 127,8 mg/dL, (K2) 133,4 mg/dL, (K3) 186,4 mg/dL, (K4) 160,6 mg/dL, dan (K5) 140,6 mg/dL. Uji one-way Anova menunjukkan perbedaan signifikan (p<0,05). Uji post hoc LSD menunjukkan tidak ada perbedaan bermakna antara kelompok terlatih dengan intervensi dan tidak terlatih dengan intervensi (p>0,05).
Intervensi latihan submaksimal setelah istirahat satu minggu pada kelompok terlatih dan tidak terlatih dengan latihan submaksimal tidak memiliki pengaruh terhadap kadar glukosa darah tikus putih (Rattus norvegicus) betina galur Wistar.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
2. Permadi AW. The benefits of aerobic training for improving quality of life: A Critical Review of Study. Warmadewa Medical Journal) [Internet]. 2019;4(2):2527–4627. Available from: http://dx.doi.org/10.22225/wmj.4.2.1016.57-60
3. Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas CE, Vittorio TJ. Aerobic vs anaerobic exercise training effects on the cardiovascular system . World J Cardiol. 2017;9(2):134.
4. Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Vol. 20, Psychonomic Bulletin and Review. 2013. p. 73–86.
5. Castrogiovanni P, Imbesi R. Oxidative stress and skeletal muscle in exercise. Italian Journal of Anatomy And Embryology [Internet]. 2012;117(2):107–16. Available from: http://www.fupress.com/ijae
6. Bogdanis GC, Stavrinou P, Fatouros IG, Philippou A, Chatzinikolaou A, Draganidis D, et al. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food and Chemical Toxicology. 2013 Nov;61:171–7.
7. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Vol. 2017, Oxidative Medicine and Cellular Longevity. Hindawi Limited; 2017.
8. Salmon AB. Oxidative stress in the etiology of age-associated decline in glucose metabolism. Longev Healthspan [Internet]. 2012;1(7). Available from: http://www.longevityandhealthspan.com/content/1/1/7
9. Rascón-Careaga A, Corella-Madueño MAG, Pérez-Martínez CJ, García-Rojas AM, Souflé-Vásquez SZ, García-Moroyoqui MT, et al. Validation and Estimation of Uncertainty for a Glucose Determination Method GOD-PAP Using a Multi-calibrator as Reference. MAPAN 2021 36:2 [Internet]. 2021 Apr 23 [cited 2022 Jul 17];36(2):269–78. Available from: https://link.springer.com/article/10.1007/s12647-021-00441-5
10. CDC. NHIS - Adult Physical Activity - Glossary [Internet]. 2022 [cited 2022 Jun 16]. Available from: https://www.cdc.gov/nchs/nhis/physical_activity/pa_glossary.htm
11. Romas JA, Sharma M. Regular Physical Activity and Exercise. Practical Stress Management. 2017 Jan 1;155–68.
12. Frontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Behav Genet. 2014 Mar 4;45(2):183–95.
13. Madden CC, Putukian M, McCarty EC, Young CC. Netter’s Sports Medicine . 2nd ed. Elsevier; 2016.
14. Moustafa A, Arisha AH. Swim therapy-induced tissue specific metabolic responses in male rats. Life Sci. 2020 Dec 1;262.
15. Lucini D, Pagani M. Exercise prescription to foster health and well-being: A behavioral approach to transform barriers into opportunities. Int J Environ Res Public Health. 2021 Feb 1;18(3):1–22.
16. Bompa TO, Buzzichelli CA. Periodization : Theory and Methodology of Training. 6th ed. Human Kinetics; 2019.
17. Lovell D, Shields D, Beck B, Cuneo R, McLellan C. The aerobic performance of trained and untrained handcyclists with spinal cord injury. Eur J Appl Physiol. 2012 Sep;112(9):3431–7.
18. Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of high intensity exercise on oxidative stress and antioxidant status in untrained humans: A systematic review. Vol. 10, Biology. MDPI; 2021.
19. Keshari AK, Kumar Verma A, Srivastava R. Oxidative Stress: A Review. The International Journal Of Science & Technoledge [Internet]. 2015 Jul;3(7). Available from: www.theijst.com
20. Azizbeigi K, Stannard SR, Atashak S, Mosalman Haghighi M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J Exerc Sci Fit. 2014;12(1):1–6.
21. Olubajo A, Adefunke A, Ayinla O, Margaret A. Changes in stress index, blood antioxidants and lipid profile between trained and untrained young female adults during treadmill exercise test: A comparative study. Nigerian Journal of Experimental and Clinical Biosciences. 2015;3(1):1.
22. Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015 Apr 10;5(2):356–77.
23. Sharifi-Rad M, Anil Kumar N v., Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Vol. 11, Frontiers in Physiology. Frontiers Media S.A.; 2020.
24. Wong H, Singh J, Go RM, Ahluwalia N, Guerrero-Go MA. The Effects of Mental Stress on Non-insulin-dependent Diabetes: Determining the Relationship Between Catecholamine and Adrenergic Signals from Stress, Anxiety, and Depression on the Physiological Changes in the Pancreatic Hormone Secretion. Cureus [Internet]. 2019 Aug 24 [cited 2022 Dec 30];11(8). Available from: /pmc/articles/PMC6710489/